Copied to
clipboard

G = C3×C335C4order 324 = 22·34

Direct product of C3 and C335C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×C335C4, C347C4, C3311C12, C3310Dic3, (C33×C6).3C2, (C32×C6).21C6, (C32×C6).22S3, C327(C3×Dic3), C6.6(C33⋊C2), C324(C3⋊Dic3), C3⋊(C3×C3⋊Dic3), C6.9(C3×C3⋊S3), C2.(C3×C33⋊C2), (C3×C6).42(C3×S3), (C3×C6).23(C3⋊S3), SmallGroup(324,157)

Series: Derived Chief Lower central Upper central

C1C33 — C3×C335C4
C1C3C32C33C32×C6C33×C6 — C3×C335C4
C33 — C3×C335C4
C1C6

Generators and relations for C3×C335C4
 G = < a,b,c,d,e | a3=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 792 in 324 conjugacy classes, 114 normal (10 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C32, C32, Dic3, C12, C3×C6, C3×C6, C33, C33, C33, C3×Dic3, C3⋊Dic3, C32×C6, C32×C6, C32×C6, C34, C3×C3⋊Dic3, C335C4, C33×C6, C3×C335C4
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, C3⋊S3, C3×Dic3, C3⋊Dic3, C3×C3⋊S3, C33⋊C2, C3×C3⋊Dic3, C335C4, C3×C33⋊C2, C3×C335C4

Smallest permutation representation of C3×C335C4
On 108 points
Generators in S108
(1 90 34)(2 91 35)(3 92 36)(4 89 33)(5 25 78)(6 26 79)(7 27 80)(8 28 77)(9 30 71)(10 31 72)(11 32 69)(12 29 70)(13 49 74)(14 50 75)(15 51 76)(16 52 73)(17 21 94)(18 22 95)(19 23 96)(20 24 93)(37 62 68)(38 63 65)(39 64 66)(40 61 67)(41 45 99)(42 46 100)(43 47 97)(44 48 98)(53 88 106)(54 85 107)(55 86 108)(56 87 105)(57 104 82)(58 101 83)(59 102 84)(60 103 81)
(1 54 20)(2 17 55)(3 56 18)(4 19 53)(5 51 69)(6 70 52)(7 49 71)(8 72 50)(9 27 74)(10 75 28)(11 25 76)(12 73 26)(13 30 80)(14 77 31)(15 32 78)(16 79 29)(21 86 91)(22 92 87)(23 88 89)(24 90 85)(33 96 106)(34 107 93)(35 94 108)(36 105 95)(37 98 57)(38 58 99)(39 100 59)(40 60 97)(41 63 101)(42 102 64)(43 61 103)(44 104 62)(45 65 83)(46 84 66)(47 67 81)(48 82 68)
(1 49 60)(2 57 50)(3 51 58)(4 59 52)(5 38 18)(6 19 39)(7 40 20)(8 17 37)(9 43 85)(10 86 44)(11 41 87)(12 88 42)(13 81 34)(14 35 82)(15 83 36)(16 33 84)(21 62 28)(22 25 63)(23 64 26)(24 27 61)(29 106 46)(30 47 107)(31 108 48)(32 45 105)(53 100 70)(54 71 97)(55 98 72)(56 69 99)(65 95 78)(66 79 96)(67 93 80)(68 77 94)(73 89 102)(74 103 90)(75 91 104)(76 101 92)
(1 80 43)(2 44 77)(3 78 41)(4 42 79)(5 45 92)(6 89 46)(7 47 90)(8 91 48)(9 60 93)(10 94 57)(11 58 95)(12 96 59)(13 61 54)(14 55 62)(15 63 56)(16 53 64)(17 104 31)(18 32 101)(19 102 29)(20 30 103)(21 82 72)(22 69 83)(23 84 70)(24 71 81)(25 99 36)(26 33 100)(27 97 34)(28 35 98)(37 75 108)(38 105 76)(39 73 106)(40 107 74)(49 67 85)(50 86 68)(51 65 87)(52 88 66)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)

G:=sub<Sym(108)| (1,90,34)(2,91,35)(3,92,36)(4,89,33)(5,25,78)(6,26,79)(7,27,80)(8,28,77)(9,30,71)(10,31,72)(11,32,69)(12,29,70)(13,49,74)(14,50,75)(15,51,76)(16,52,73)(17,21,94)(18,22,95)(19,23,96)(20,24,93)(37,62,68)(38,63,65)(39,64,66)(40,61,67)(41,45,99)(42,46,100)(43,47,97)(44,48,98)(53,88,106)(54,85,107)(55,86,108)(56,87,105)(57,104,82)(58,101,83)(59,102,84)(60,103,81), (1,54,20)(2,17,55)(3,56,18)(4,19,53)(5,51,69)(6,70,52)(7,49,71)(8,72,50)(9,27,74)(10,75,28)(11,25,76)(12,73,26)(13,30,80)(14,77,31)(15,32,78)(16,79,29)(21,86,91)(22,92,87)(23,88,89)(24,90,85)(33,96,106)(34,107,93)(35,94,108)(36,105,95)(37,98,57)(38,58,99)(39,100,59)(40,60,97)(41,63,101)(42,102,64)(43,61,103)(44,104,62)(45,65,83)(46,84,66)(47,67,81)(48,82,68), (1,49,60)(2,57,50)(3,51,58)(4,59,52)(5,38,18)(6,19,39)(7,40,20)(8,17,37)(9,43,85)(10,86,44)(11,41,87)(12,88,42)(13,81,34)(14,35,82)(15,83,36)(16,33,84)(21,62,28)(22,25,63)(23,64,26)(24,27,61)(29,106,46)(30,47,107)(31,108,48)(32,45,105)(53,100,70)(54,71,97)(55,98,72)(56,69,99)(65,95,78)(66,79,96)(67,93,80)(68,77,94)(73,89,102)(74,103,90)(75,91,104)(76,101,92), (1,80,43)(2,44,77)(3,78,41)(4,42,79)(5,45,92)(6,89,46)(7,47,90)(8,91,48)(9,60,93)(10,94,57)(11,58,95)(12,96,59)(13,61,54)(14,55,62)(15,63,56)(16,53,64)(17,104,31)(18,32,101)(19,102,29)(20,30,103)(21,82,72)(22,69,83)(23,84,70)(24,71,81)(25,99,36)(26,33,100)(27,97,34)(28,35,98)(37,75,108)(38,105,76)(39,73,106)(40,107,74)(49,67,85)(50,86,68)(51,65,87)(52,88,66), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)>;

G:=Group( (1,90,34)(2,91,35)(3,92,36)(4,89,33)(5,25,78)(6,26,79)(7,27,80)(8,28,77)(9,30,71)(10,31,72)(11,32,69)(12,29,70)(13,49,74)(14,50,75)(15,51,76)(16,52,73)(17,21,94)(18,22,95)(19,23,96)(20,24,93)(37,62,68)(38,63,65)(39,64,66)(40,61,67)(41,45,99)(42,46,100)(43,47,97)(44,48,98)(53,88,106)(54,85,107)(55,86,108)(56,87,105)(57,104,82)(58,101,83)(59,102,84)(60,103,81), (1,54,20)(2,17,55)(3,56,18)(4,19,53)(5,51,69)(6,70,52)(7,49,71)(8,72,50)(9,27,74)(10,75,28)(11,25,76)(12,73,26)(13,30,80)(14,77,31)(15,32,78)(16,79,29)(21,86,91)(22,92,87)(23,88,89)(24,90,85)(33,96,106)(34,107,93)(35,94,108)(36,105,95)(37,98,57)(38,58,99)(39,100,59)(40,60,97)(41,63,101)(42,102,64)(43,61,103)(44,104,62)(45,65,83)(46,84,66)(47,67,81)(48,82,68), (1,49,60)(2,57,50)(3,51,58)(4,59,52)(5,38,18)(6,19,39)(7,40,20)(8,17,37)(9,43,85)(10,86,44)(11,41,87)(12,88,42)(13,81,34)(14,35,82)(15,83,36)(16,33,84)(21,62,28)(22,25,63)(23,64,26)(24,27,61)(29,106,46)(30,47,107)(31,108,48)(32,45,105)(53,100,70)(54,71,97)(55,98,72)(56,69,99)(65,95,78)(66,79,96)(67,93,80)(68,77,94)(73,89,102)(74,103,90)(75,91,104)(76,101,92), (1,80,43)(2,44,77)(3,78,41)(4,42,79)(5,45,92)(6,89,46)(7,47,90)(8,91,48)(9,60,93)(10,94,57)(11,58,95)(12,96,59)(13,61,54)(14,55,62)(15,63,56)(16,53,64)(17,104,31)(18,32,101)(19,102,29)(20,30,103)(21,82,72)(22,69,83)(23,84,70)(24,71,81)(25,99,36)(26,33,100)(27,97,34)(28,35,98)(37,75,108)(38,105,76)(39,73,106)(40,107,74)(49,67,85)(50,86,68)(51,65,87)(52,88,66), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108) );

G=PermutationGroup([[(1,90,34),(2,91,35),(3,92,36),(4,89,33),(5,25,78),(6,26,79),(7,27,80),(8,28,77),(9,30,71),(10,31,72),(11,32,69),(12,29,70),(13,49,74),(14,50,75),(15,51,76),(16,52,73),(17,21,94),(18,22,95),(19,23,96),(20,24,93),(37,62,68),(38,63,65),(39,64,66),(40,61,67),(41,45,99),(42,46,100),(43,47,97),(44,48,98),(53,88,106),(54,85,107),(55,86,108),(56,87,105),(57,104,82),(58,101,83),(59,102,84),(60,103,81)], [(1,54,20),(2,17,55),(3,56,18),(4,19,53),(5,51,69),(6,70,52),(7,49,71),(8,72,50),(9,27,74),(10,75,28),(11,25,76),(12,73,26),(13,30,80),(14,77,31),(15,32,78),(16,79,29),(21,86,91),(22,92,87),(23,88,89),(24,90,85),(33,96,106),(34,107,93),(35,94,108),(36,105,95),(37,98,57),(38,58,99),(39,100,59),(40,60,97),(41,63,101),(42,102,64),(43,61,103),(44,104,62),(45,65,83),(46,84,66),(47,67,81),(48,82,68)], [(1,49,60),(2,57,50),(3,51,58),(4,59,52),(5,38,18),(6,19,39),(7,40,20),(8,17,37),(9,43,85),(10,86,44),(11,41,87),(12,88,42),(13,81,34),(14,35,82),(15,83,36),(16,33,84),(21,62,28),(22,25,63),(23,64,26),(24,27,61),(29,106,46),(30,47,107),(31,108,48),(32,45,105),(53,100,70),(54,71,97),(55,98,72),(56,69,99),(65,95,78),(66,79,96),(67,93,80),(68,77,94),(73,89,102),(74,103,90),(75,91,104),(76,101,92)], [(1,80,43),(2,44,77),(3,78,41),(4,42,79),(5,45,92),(6,89,46),(7,47,90),(8,91,48),(9,60,93),(10,94,57),(11,58,95),(12,96,59),(13,61,54),(14,55,62),(15,63,56),(16,53,64),(17,104,31),(18,32,101),(19,102,29),(20,30,103),(21,82,72),(22,69,83),(23,84,70),(24,71,81),(25,99,36),(26,33,100),(27,97,34),(28,35,98),(37,75,108),(38,105,76),(39,73,106),(40,107,74),(49,67,85),(50,86,68),(51,65,87),(52,88,66)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108)]])

90 conjugacy classes

class 1  2 3A3B3C···3AO4A4B6A6B6C···6AO12A12B12C12D
order12333···344666···612121212
size11112···22727112···227272727

90 irreducible representations

dim1111112222
type+++-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3
kernelC3×C335C4C33×C6C335C4C34C32×C6C33C32×C6C33C3×C6C32
# reps11222413132626

Matrix representation of C3×C335C4 in GL6(𝔽13)

100000
010000
003000
000300
000090
000009
,
950000
030000
001000
000100
000030
000009
,
950000
030000
001000
000100
000090
000003
,
100000
010000
009000
0011300
000090
000003
,
1030000
130000
007800
007600
000001
0000120

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[9,0,0,0,0,0,5,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,9],[9,0,0,0,0,0,5,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,11,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,3],[10,1,0,0,0,0,3,3,0,0,0,0,0,0,7,7,0,0,0,0,8,6,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C3×C335C4 in GAP, Magma, Sage, TeX

C_3\times C_3^3\rtimes_5C_4
% in TeX

G:=Group("C3xC3^3:5C4");
// GroupNames label

G:=SmallGroup(324,157);
// by ID

G=gap.SmallGroup(324,157);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,579,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽